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0.1 FFL

形式論理学の形式化プロジェクト： github.com/FormalizedFormalLogic 

• 古典命題論理 LO.Propositional
• 直観主義命題論理 LO.IntProp
• 古典命題様相論理 LO.Modal
• 古典一階述語論理 LO.FirstOrder
• 直観主義一階述語論理 LO.IntFO
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0.2不完全性定理

理論 𝑇  を計算可能な一階算術の理論とする．

定理 0.2.1 (不完全性定理) :
(G1) 𝑇  が基礎的な算術を扱える程度に強く，まともならば， 𝑇  から証明も反証もできな
い論理式が存在する．

(G2) 𝑇  が十分強く，無矛盾ならば，𝑇  の無矛盾性を表す文は証明できない．

1986(!), Shanker Nqthmによる G1の形式化．
2004, O’Connor Coqによる G1の形式化．
2004, Harrison HOL Light による G1の形式化．
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0.2不完全性定理

2021, Paulson Isabelle/HOL による G1と G2 の形式化 [1]． 算術ではなく遺伝的有限集合の
理論 𝖧𝖥 (ペアノ算術 𝖯𝖠 と同等)の上で証明している．
• 私が知る限り唯一の第二不完全性定理の形式化¹．

定理 0.2.2 (Formalized by Paulson):
(G1) 𝖧𝖥 からは証明も反証もできない論理式が存在する．
(G2) 自己の無矛盾性を表す文は 𝖧𝖥 からは証明できない．

¹ただし可証性条件を仮定した上での G2の証明はいくつか存在する．
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0.2不完全性定理

次の不完全性定理の一つのバリエーションを形式化した¹：

定理 0.2.3 :
(G1) 𝑇  が 𝖱𝟢 より強くΣ1-健全ならば， 𝑇  から証明も反証もできない論理式が存在する．
(G2) 𝑇  が 𝖨Σ1 より強く無矛盾ならば， 𝑇  の無矛盾性を表す文は証明できない．

• Σ1-健全：𝑇  から証明可能な Σ1文は標準モデルの上で真．
• 𝖱𝟢 : Cobham の最弱の算術．
• 𝖨Σ1: ペアノ算術の断片理論．

¹後述するように完全性定理を用いているため非構成的．
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0.2不完全性定理

以下の５つのステップを踏んで証明を行う．

1. 一階述語論理の形式化．
• 項と論理式，代入操作などの形式化．
• 証明可能性，充足性の形式化．

2. 完全性定理．
• 証明探索

3. 𝖨Σ1 の内部で算術を展開する．
• 指数関数が定義可能であることを証明する．
• 有限集合，有限列といった基礎概念をコード化する．

4. メタ数学の算術化．
• 項，論理式，証明可能性などをコード化する．

5. Hilbert-Bernays-Löb の可証性条件
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1.一階述語論理の形式化．



1.一階述語論理の形式化．

1.1項・論理式の形式化

論理式（擬論理式）は常に否定標準形を取るように定義する¹． すなわち，

𝜑, 𝜓 ⩴ ⊤ | ⊥ | 𝑅( ⃗𝑣) | ¬𝑅( ⃗𝑣) | 𝜑 ∧ 𝜓 | 𝜑 ∨ 𝜓 | ∀𝜑 | ∃𝜑

inductive Semiformula (L : Language) (ξ : Type*) : ℕ → Type _ where
  | verum  {n} : Semiformula L ξ n
  | falsum {n} : Semiformula L ξ n
  | rel    {n} : {arity : ℕ} → L.Rel arity → (Fin arity → Semiterm L ξ n) → Semiformula L ξ n
  | nrel   {n} : {arity : ℕ} → L.Rel arity → (Fin arity → Semiterm L ξ n) → Semiformula L ξ n
  | and    {n} : Semiformula L ξ n → Semiformula L ξ n → Semiformula L ξ n
  | or     {n} : Semiformula L ξ n → Semiformula L ξ n → Semiformula L ξ n
  | all    {n} : Semiformula L ξ (n + 1) → Semiformula L ξ n
  | ex     {n} : Semiformula L ξ (n + 1) → Semiformula L ξ n

論理式 糖衣構文
98 + 6748 = 6846 “98 + 6748 = 6846”

(∀𝑥)(∀𝑦)[𝑎 ⋅ (𝑥 + 𝑦) = 𝑎 ⋅ 𝑥 + 𝑎 ⋅ 𝑦] “a | ∀ x y, a * (x + y) = a * x + a * y”

(∀𝑥)[𝑥 < 𝑛 ↔ ⋁
𝑖<𝑛

𝑥 = 𝑖] “∀ x, x < ↑n ↔ ⋁ i < n, x = ↑i”

¹否定 ¬ は論理式の関数として定義する． また 𝜑 → 𝜓 ≔ ¬𝜑 ∨ 𝜓 とする．
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1.一階述語論理の形式化．

1.2証明可能性の形式化

証明体系には Tait計算を採用する．

axL
𝑅( ⃗𝑣), ¬𝑅( ⃗𝑣), Δ

verum
⊤, Δ

𝜑, 𝜓, Δ or
𝜑 ∨ 𝜓, Δ

𝜑, Δ 𝜓, Δ and
𝜑 ∧ 𝜓, Δ

𝜑+(&0), Δ+
all¹

∀𝜑, Δ
𝜑(𝑡), Δ ex
∃𝜑, Δ

Δ wk
Γ

(if Δ ⊆ Γ)

𝜑, Δ ¬𝜑, Δ cut
Δ

root
𝜑

(if 𝜑 ∈ 𝑇 )

inductive Derivation (T : Theory L) : Sequent L → Type _
  | axL (Δ) {k} (r : L.Rel k) (v) : Derivation T (rel r v :: nrel r v :: Δ)
  | verum (Δ)    : Derivation T (⊤ :: Δ)
  | or {Δ p q}   : Derivation T (p :: q :: Δ) → Derivation T (p ⋎ q :: Δ)
  | and {Δ p q}  : Derivation T (p :: Δ) → Derivation T (q :: Δ) → Derivation T (p ⋏ q :: Δ)
  | all {Δ p}    : Derivation T (Rew.free.hom p :: Δ⁺) → Derivation T ((∀' p) :: Δ)
  | ex {Δ p} (t) : Derivation T (p/[t] :: Δ) → Derivation T ((∃' p) :: Δ)
  | wk {Δ Γ}     : Derivation T Δ → Δ ⊆ Γ → Derivation T Γ
  | cut {Δ p}    : Derivation T (p :: Δ) → Derivation T (∼p :: Δ) → Derivation T Δ
  | root {p}     : p ∈ T → Derivation T [p]

Tait計算は推論規則が少ないため扱いやすく，LKなどの他の推論規則に比べ様々な証明が簡
易になる（こともある）．

¹ここでは自由変数を &0, &1, … と表記する．また 𝜑+, Γ+ はそれぞれに含まれる自由変数をインクリメントしたもの
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2.完全性定理



2.完全性定理

2.1完全性定理

定理 2.1.1 (完全性定理) :  すべての 論理式 𝜑 について，

𝑇 ⊢ 𝜑 ⟺ 𝑇 ⊨ 𝜑

⟹ 方向（健全性定理）は証明に関する帰納法により従う．⟸ を示すには以下を証明すれば良
い．

補題 2.1.1 :推件 Γ について， 次のいずれかが成立する．
• 𝑇 ⊢𝖳 Γ
• すべての 𝜑 ∈ Γ を充足しないような 𝑇  のモデルが存在する．
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2.完全性定理

2.2証明探索

証明は Tait計算の証明探索による(参考: [2])．
(∃𝑥)[(𝑥 ≤ 𝑎 ∧ 𝑥 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]]

(∃𝑥)[(𝑥 ≤ 𝑎 ∧ 𝑥 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]], (𝑏 ≤ 𝑎 ∧ 𝑏 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]

(∃𝑥)[(𝑥 ≤ 𝑎 ∧ 𝑥 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]], 𝑏 ≤ 𝑎 ∧ 𝑏 ≠ 𝑎, (∀𝑦)[𝑎 ≤ 𝑦]

(∃𝑥)[(𝑥 ≤ 𝑎 ∧ 𝑥 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]], 𝑏 ≤ 𝑎 ∧ 𝑏 ≠ 𝑎, 𝑎 ≤ 𝑐

(∃𝑥)[(𝑥 ≤ 𝑎 ∧ 𝑥 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]], 𝑏 ≤ 𝑎 ∧ 𝑏 ≠ 𝑎, 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑎

⋮

(∃𝑥)[(𝑥 ≤ 𝑎 ∧ 𝑥 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]], 𝑏 ≤ 𝑎 ∧ 𝑏 ≠ 𝑎, 𝑎 ≤ 𝑐, 𝑏 ≠ 𝑎

(∃𝑥)[(𝑥 ≤ 𝑎 ∧ 𝑥 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]], 𝑏 ≤ 𝑎 ∧ 𝑏 ≠ 𝑎, 𝑎 ≤ 𝑐, 𝑏 ≠ 𝑎, (𝑐 ≤ 𝑎 ∧ 𝑐 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]

(∃𝑥)[(𝑥 ≤ 𝑎 ∧ 𝑥 ≠ 𝑎) ∨ (∀𝑦)[𝑎 ≤ 𝑦]], 𝑏 ≤ 𝑎 ∧ 𝑏 ≠ 𝑎, 𝑎 ≤ 𝑐, 𝑏 ≠ 𝑎, 𝑐 ≤ 𝑎 ∧ 𝑐 ≠ 𝑎, (∀𝑦)[𝑎 ≤ 𝑦]

⋮

inductive Redux (T : Theory L) : Code L → Sequent L → Sequent L → Prop
  | axLRefl   {Γ : Sequent L} {k} (r : L.Rel k) (v) :
    Semiformula.rel r v ∉ Γ ∨ Semiformula.nrel r v ∉ Γ → Redux T (Code.axL r v) Γ Γ
  | verumRefl {Γ : Sequent L} : ⊤ ∉ Γ → Redux T Code.verum Γ Γ
  | and₁      {Γ : Sequent L} {p q : SyntacticFormula L} : p ⋏ q ∈ Γ → Redux T (Code.and p q) (p :: Γ) Γ
  | and₂      {Γ : Sequent L} {p q : SyntacticFormula L} : p ⋏ q ∈ Γ → Redux T (Code.and p q) (q :: Γ) Γ
  | andRefl   {Γ : Sequent L} {p q : SyntacticFormula L} : p ⋏ q ∉ Γ → Redux T (Code.and p q) Γ Γ
  | or        {Γ : Sequent L} {p q : SyntacticFormula L} : p ⋎ q ∈ Γ → Redux T (Code.or p q) (p :: q :: Γ) Γ
  | orRefl    {Γ : Sequent L} {p q : SyntacticFormula L} : p ⋎ q ∉ Γ → Redux T (Code.or p q) Γ Γ
  | all       {Γ : Sequent L} {p : SyntacticSemiformula L 1} : ∀' p ∈ Γ → Redux T (Code.all p) (p/[&(newVar Γ)] :: Γ) Γ
  | allRefl   {Γ : Sequent L} {p : SyntacticSemiformula L 1} : ∀' p ∉ Γ → Redux T (Code.all p) Γ Γ
  | ex        {Γ : Sequent L} {p : SyntacticSemiformula L 1} {t : SyntacticTerm L} :
    ∃' p ∈ Γ → Redux T (Code.ex p t) (p/[t] :: Γ) Γ
  | exRefl    {Γ : Sequent L} {p : SyntacticSemiformula L 1} {t : SyntacticTerm L} :
    ∃' p ∉ Γ → Redux T (Code.ex p t) Γ Γ
  | id        {Γ : Sequent L} {p : SyntacticFormula L} (hp : p ∈ T) : Redux T (Code.id p) ((∼∀∀p) :: Γ) Γ
  | idRefl    {Γ : Sequent L} {p : SyntacticFormula L} (hp : p ∉ T) : Redux T (Code.id p) Γ Γ
local notation:25 Δ₁" ≺[" c:25 "] " Δ₂:80 => Redux T c Δ₁ Δ₂
inductive ReduxNat (T : Theory L) (s : ℕ) : Sequent L → Sequent L → Prop
  | redux {c : Code L} : decode s.unpair.1 = some c → ∀ {Δ₂ Δ₁}, Redux T c Δ₂ Δ₁ → ReduxNat T s Δ₂ Δ₁
  | refl : decode (α := Code L) s.unpair.1 = none → ∀ Δ, ReduxNat T s Δ Δ
local notation:25 Δ₁" ≺⟨" s:25 "⟩ " Δ₂:80 => ReduxNat T s Δ₁ Δ₂

探索木が well-founded ならば証明可能．

noncomputable def syntacticMainLemma
    (wf : WellFounded (SearchTree.Lt T Γ))
    (p : SearchTree T Γ) :
    T ⟹ p.seq

探索木が well-founded でないならば Γ の反例モデル Model
T Γ が構成できる．

lemma Model.models : Model T Γ ⊧ₘ* T 
lemma semanticMainLemmaTop
    (nwf : ¬WellFounded (SearchTree.Lt T Γ))
    {φ : SyntacticFormula L}
    (h : φ ∈ Γ) :
    ¬Evalf (Model.structure T Γ) Semiterm.fvar φ
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3. 𝖨Σ1の内部で算術を展開する



3. 𝖨Σ1の内部で算術を展開する

3.1算術の公理系を定義する

𝖯𝖠−

inductive PeanoMinus : Theory ℒₒᵣ
  | equal         : ∀ φ ∈ 𝐄𝐐, PeanoMinus φ
  | addZero       : PeanoMinus “x | x + 0 = x”
  | addAssoc      : PeanoMinus “x y z | (x + y) + z = x + (y + z)”
  | addComm       : PeanoMinus “x y | x + y = y + x”
  | addEqOfLt     : PeanoMinus “x y | x < y → ∃ z, x + z = y”
  | zeroLe        : PeanoMinus “x | 0 ≤ x”
  | zeroLtOne     : PeanoMinus “0 < 1”
  | oneLeOfZeroLt : PeanoMinus “x | 0 < x → 1 ≤ x”
  | addLtAdd      : PeanoMinus “x y z | x < y → x + z < y + z”
  | mulZero       : PeanoMinus “x | x * 0 = 0”
  | mulOne        : PeanoMinus “x | x * 1 = x”
  | mulAssoc      : PeanoMinus “x y z | (x * y) * z = x * (y * z)”
  | mulComm       : PeanoMinus “x y | x * y = y * x”
  | mulLtMul      : PeanoMinus “x y z | x < y ∧ 0 < z → x * z < y * z”
  | distr         : PeanoMinus “x y z | x * (y + z) = x * y + x * z”
  | ltIrrefl      : PeanoMinus “x | x ≮ x”
  | ltTrans       : PeanoMinus “x y z | x < y ∧ y < z → x < z”
  | ltTri         : PeanoMinus “x y | x < y ∨ x = y ∨ x > y”
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3. 𝖨Σ1の内部で算術を展開する

3.1算術の公理系を定義する

𝖨𝜑 def succInd {ξ} (φ : Semiformula L ξ 1) : Formula L ξ :=
  “!φ 0 → (∀ x, !φ x → !φ (x + 1)) → ∀ x, !φ x”

𝖨Σ𝑘

def indScheme (Γ : Semiformula L ℕ 1 → Prop) : Theory L :=
  { q | ∃ p : Semiformula L ℕ 1, Γ p ∧ q = succInd p }
abbrev indH (Γ : Polarity) (k : ℕ) : Theory ℒₒᵣ :=
  𝐏𝐀⁻ + indScheme ℒₒᵣ (Arith.Hierarchy Γ k)
abbrev iSigma (k : ℕ) : Theory ℒₒᵣ := 𝐈𝐍𝐃 𝚺 k

𝖯𝖠 abbrev peano : Theory ℒₒᵣ := 𝐏𝐀⁻ + indScheme ℒₒᵣ Set.univ

𝖱𝟢

inductive CobhamR0 : Theory ℒₒᵣ
  | equal        : ∀ φ ∈ 𝐄𝐐, CobhamR0 φ
  | Ω₁ (n m : ℕ) : CobhamR0 “↑n + ↑m = ↑(n + m)”
  | Ω₂ (n m : ℕ) : CobhamR0 “↑n * ↑m = ↑(n * m)”
  | Ω₃ (n m : ℕ) : n ≠ m → CobhamR0 “↑n ≠ ↑m”
  | Ω₄ (n : ℕ)   : CobhamR0 “∀ x, x < ↑n ↔ ⋁ i < n, x = ↑i”
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3. 𝖨Σ1の内部で算術を展開する

3.2（形式的）証明のルーチン

何らかの算術の体系 𝑇  からある論理式を証明できること を証明したい．

𝖫𝖾𝖺𝗇 ⊢ “𝑇 ⊢ 𝜑”

しかし，そもそも Leanが形式化された数学であり，その内部でさらに形式化された証明を証
明するのはかなり煩雑になる （さらに後には「形式化された形式化された形式化された証明」
のようなものさえ扱うことになる）．

これは大変なので， 完全性定理を用いて代わりに意味論帰結を証明する．

𝖫𝖾𝖺𝗇 ⊢ “𝑇 ⊧ 𝜑”

意味論的な議論では，Leanのライブラリに用意された代数学の種々の補題やメタプログラミン
グや自動証明が利用できるため，より簡単に作業を行うことができる．
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3. 𝖨Σ1の内部で算術を展開する

3.2（形式的）証明のルーチン

まず理論の任意のモデル V を固定する．

variable {V : Type*} [ORingStruc V] [V ⊧ₘ* 𝐈open]

• ORingStruc V: V が言語 ℒOR の構造であることを主張する typeclass.
• V ⊧ₘ* 𝐈open: V が理論 𝐈open を満たすことを主張する typeclass.

この仮定のもとで証明を行う． 関数を追加したいならば選択関数を用いる．

lemma sqrt_exists_unique (a : V) :
    ∃! x, x * x ≤ a ∧ a < (x + 1) * (x + 1) := by ...
def sqrt (a : V) : V := Classical.choose! (sqrt_exists_unique a)
prefix:75 "√" => sqrt
@[simp] lemma sqrt_mul_self (a : V) : √(a * a) = a := by ...

ただし，帰納法を適用するために，定義した関数や関係を含む述語がある算術的階層に含まれ
ることが示せなければならない．

Lean4を用いた Gödelの第一/第二不完全性定理の形式化 16 / 43



3. 𝖨Σ1の内部で算術を展開する

3.3 definability tactic

definability tactic は Leanの述語がある算術的階層に含まれることを（可能なら）自動証明す
る.

Σ1-Predicate (fun v ↦ ∀ i < len v, v.[i] ≤ listMax v)

Σ1-Function len

✓

Σ1-Relation (fun i v ↦ v.[i] ≤ listMax v)

Σ1-Relation (fun x y ↦ x ≤ y)

✓

Σ1-Function₂ (fun i v ↦ v.[i])

✓

Σ1-Function₂ (fun i v ↦ listMax v)

✓

typeclassに登録された関数や関係は自動証明の末尾を示すために使用される．

instance exp_definable : 𝚺₀-Function₁ (Exp.exp : V → V) := by ...
instance length_definable : 𝚺₀-Function₁ (‖·‖ : V → V) := by ...
instance dvd_definable : 𝚺₀-Relation (fun a b : V ↦ a ∣ b) := by ...
instance Language.isSemiterm_definable : 𝚫₁-Relation L.IsSemiterm := by ...
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3. 𝖨Σ1の内部で算術を展開する

3.4指数関数

指数関数のグラフ Exp(𝑥, 𝑦) ⇔ 2𝑥 = 𝑦 は Σ0 論理式で定義可能 [3], [4]．
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3. 𝖨Σ1の内部で算術を展開する

3.5遺伝的有限集合

「𝑥 は 𝑦 の要素」 ⟺ 「𝑦 を二進数展開したとき 𝑥 桁目が 1」 と定義する．

𝑥 ∈ 𝑦 ⟺ Bit(𝑥, 𝑦) ⟺ ⌊𝑦/2𝑥⌋ mod 2 = 1

Ackermann coding によって遺伝的有限集合 𝑉𝜔 が扱える． 𝖨Σ1 のもとで基礎的な集合論が展
開できる．

theorem finset_comprehension₁ {Γ} {P : V → Prop} (hP : Γ-[1]-Predicate P) (a : V) :
    ∃ s < exp a, ∀ i < a, i ∈ s ↔ P i -- (制限された)内包公理図式
theorem sUnion_exists_unique (s : V) :
    ∃! u, ∀ x, (x ∈ u ↔ ∃ t ∈ s, x ∈ t) -- 和集合公理
theorem sigma₁_replacement {f : V → V} (hf : 𝚺₁-Function₁ f) (s : V) :
    ∃! t, ∀ y, (y ∈ t ↔ ∃ x ∈ s, y = f x) -- (制限された)置換公理図式

また有限の関数/有限列も扱える．

def IsMapping (m : V) : Prop := ∀ x ∈ domain m, ∃! y, ⟪x, y⟫ ∈ m
def Seq (s : V) : Prop := IsMapping s ∧ ∃ l, domain s = under l
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3. 𝖨Σ1の内部で算術を展開する

3.6原始再帰

𝖨Σ1では原始再帰法を用いて関数を定義できる．

定理 3.6.1 :  𝑓( ⃗𝑣), 𝑔( ⃗𝑣, 𝑥, 𝑧) を Σ1 定義可能な関数とする． このとき，以下を満たす Σ1定義可能関数 PRec𝑓,𝑔( ⃗𝑣, 𝑥) が存
在する．

PRec𝑓,𝑔( ⃗𝑣, 0) = 𝑓( ⃗𝑣)

PRec𝑓,𝑔( ⃗𝑣, 𝑥 + 1) = 𝑔( ⃗𝑣, 𝑥, PRec𝑓,𝑔( ⃗𝑣, 𝑥))

structure Blueprint (k : ℕ) where
  zero : 𝚺₁-Semisentence (k + 1)
  succ : 𝚺₁-Semisentence (k + 3)
structure Construction {k : ℕ} (φ : Blueprint k) where
  zero : (Fin k → V) → V
  succ : (Fin k → V) → V → V → V
  zero_defined : DefinedFunction zero p.zero
  succ_defined : DefinedFunction (fun v ↦ succ (v ·.succ.succ) (v 1) (v 0)) p.succ
...
variable {k : ℕ} {φ : Blueprint k} (c : Construction V φ) (v : Fin k → V)
def Construction.result (u : V) : V
theorem Construction.result_zero :
    c.result v 0 = c.zero v
theorem Construction.result_succ (u : V) :
    c.result v (u + 1) = c.succ v u (c.result v u)
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3. 𝖨Σ1の内部で算術を展開する

3.7 再帰的定義

定理 3.7.1 :  Φ𝑪( ⃗𝑣, 𝑥) をクラス 𝑪 をパラメータとして取る述語だとする． Φ が以下を満た
すならば，

1. 述語 𝑃(𝑐, ⃗𝑣, 𝑥) ≔ Φ{𝑧 | 𝑧∈𝑐}( ⃗𝑣, 𝑥) は Δ1 定義可能．
2. 単調： 𝑪 ⊆ 𝑪′ ならば， Φ𝑪( ⃗𝑣, 𝑥) ⟹ Φ𝑪′( ⃗𝑣, 𝑥)
3. 有限： Φ𝑪( ⃗𝑣, 𝑥) ならば，ある 𝑚 が存在して Φ{𝑧∈𝑪 | 𝑧<𝑚}( ⃗𝑣, 𝑥)

次を満たす Σ1 定義可能な述語 FixΦ( ⃗𝑣, 𝑥) が存在する．

FixΦ( ⃗𝑣, 𝑥) ⟺ Φ{𝑥 | FixΦ( ⃗𝑣,𝑥)}( ⃗𝑣, 𝑥)

さらに次を満たすならば，FixΦ( ⃗𝑣, 𝑥) は Δ1 定義可能でその構造帰納法が証明できる．

4. 強有限： Φ𝑪( ⃗𝑣, 𝑥) ⟹ Φ{𝑦∈𝑪 | 𝑦<𝑥}( ⃗𝑣, 𝑥)
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3. 𝖨Σ1の内部で算術を展開する

FixΦ を用いることで帰納的に定義されたクラス（リスト，形式化された項，形式化された論理
式，形式化された証明, …）を定義できる．

structure Blueprint (k : ℕ) where
  core : 𝚫₁-Semisentence (k + 2)
structure Construction (φ : Blueprint k) where
  Φ : (Fin k → V) → Set V → V → Prop
  defined : Arith.Defined (fun v ↦ Φ (v ·.succ.succ) {x | x ∈ v 1} (v 0)) φ.core
  monotone {C C' : Set V} (h : C ⊆ C') {v x} : Φ v C x → Φ v C' x
class Construction.Finite (c : Construction V φ) where
  finite {C : Set V} {v x} : c.Φ v C x → ∃ m, c.Φ v {y ∈ C | y < m} x
class Construction.StrongFinite (c : Construction V φ) where
  strong_finite {C : Set V} {v x} : c.Φ v C x → c.Φ v {y ∈ C | y < x} x
...
variable {k : ℕ} {φ : Blueprint k} (c : Construction V φ) [Finite c] (v : Fin k → V)
def Construction.Fixpoint (x : V) : Prop
theorem Construction.case :
    c.Fixpoint v x ↔ c.Φ v {z | c.Fixpoint v z} x
theorem induction [c.StrongFinite] {P : V → Prop} (hP : Γ-[1]-Predicate P)
    (H : ∀ C : Set V, (∀ x ∈ C, c.Fixpoint v x ∧ P x) → ∀ x, c.Φ v C x → P x) :
    ∀ x, c.Fixpoint v x → P x
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4.メタ数学の算術化

4.1項のコーディング

Δ1述語 𝑇𝑪  を以下のように定める．

𝑢 ∈ 𝑇𝑪 ⟺ (∃𝑧)[𝑢 = #̂𝑧] ∨ (∃𝑥)[𝑢 = &̂𝑥] ∨

(∃𝑘, 𝑓, 𝑣)[Func(𝑘, 𝑓) ∧ len(𝑣) = 𝑘 ∧ (∀𝑖 < 𝑘)[nth(𝑣, 𝑖) ∈ 𝑪] ∧ 𝑢 = 𝑓𝑘(𝑣)]

bounded variable: #̂𝑧 ≔ ⟨0, 𝑧⟩ + 1

free variable: &̂𝑧 ≔ ⟨1, 𝑧⟩ + 1

function: 𝑓𝑘(𝑣) ≔ ⟨2, 𝑓, 𝑘, 𝑣⟩ + 1

L を形式化された言語だとする． fixpoint construction により 𝑇𝑪  の不動点 L.IsUTerm : V →
Prop が得られる． また， その構造帰納法から束縛変数の最大値+1 を返す Σ1関数 L.termBV : V
→ V が定義でき， t ∈ V がコード化された（n個の束縛変数を持つ）擬項であることを表す Δ1
述語 L.IsSemiterm n t : Prop が定義される．

def Language.IsSemiterm (n t : V) : Prop := L.IsUTerm t ∧ L.termBV t ≤ n
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4.メタ数学の算術化

4.2論理式のコーディング

Δ1述語 𝐹𝑪  を以下のように定める．

𝑢 ∈ 𝐹𝑪 ⟺ (∃𝑘, 𝑅, 𝑣)[Rel(𝑘, 𝑅) ∧ 𝑢 is a list of UTerm of length 𝑘 ∧ 𝑢 = 𝑅𝑘(𝑣)] ∨

(∃𝑘, 𝑅, 𝑣)[Rel(𝑘, 𝑅) ∧ 𝑢 is a list of UTerm of length 𝑘 ∧ 𝑢 = ̂¬𝑅𝑘(𝑣)] ∨

𝑢 = ⊤̂ ∨ 𝑢 =⊥̂ ∨
(∃𝑝, 𝑞 ∈ 𝑪)[𝑢 = 𝑝 ∧ 𝑞] ∨ (∃𝑝, 𝑞 ∈ 𝑪)[𝑢 = 𝑝 ∨ 𝑞] ∨

(∃𝑝 ∈ 𝑪)[𝑢 = ∀̂𝑝] ∨ (∃𝑝 ∈ 𝑪)[𝑢 = ∃̂𝑝]

𝑅𝑘(𝑣) ≔ ⟨0, 𝑅, 𝑘, 𝑣⟩ + 1
̂¬𝑅𝑘(𝑣) ≔ ⟨1, 𝑅, 𝑘, 𝑣⟩ + 1

⊤̂ ≔ ⟨2, 0⟩ + 1

⊥̂≔ ⟨3, 0⟩ + 1

𝑝 ∧ 𝑞 ≔ ⟨4, 𝑝, 𝑞⟩ + 1

𝑝 ∨ 𝑞 ≔ ⟨5, 𝑝, 𝑞⟩ + 1

∀̂𝑝 ≔ ⟨6, 𝑝⟩ + 1

∃̂𝑝 ≔ ⟨7, 𝑝⟩ + 1

擬項のときと同様にして形式化された擬論理式を指す Δ1述語 IsSemiformula n p : Prop が定義
される．

Lean4を用いた Gödelの第一/第二不完全性定理の形式化 25 / 43



4.メタ数学の算術化

4.3 Tait計算のコーディング

𝑇  を Δ1 定義可能な理論とする． Δ1述語 𝐷𝑇
𝑪  を以下のように定める．

𝑑 ∈ 𝐷𝑇
𝑪 ⟺ (∀𝑝 ∈ sqt(𝑑))[Semiformula(0, 𝑝)] ∧

[(∃𝑠, 𝑝)[𝑑 = AXL(𝑠, 𝑝) ∧ 𝑝 ∈ 𝑠 ∧ ¬̂𝑝 ∈ 𝑠]

(∃𝑠)[𝑑 = ⊤-INTRO(𝑠) ∧ ⊤̂ ∈ 𝑠] ∨

(∃𝑠, 𝑝, 𝑞)(∃𝑑𝑝, 𝑑𝑞 ∈ 𝑪)[𝑑 = ∧ -INTRO(𝑠, 𝑝, 𝑞, 𝑑𝑝, 𝑑𝑞) ∧ 𝑝 ∧ 𝑞 ∈ 𝑠 ∧ sqt(𝑑𝑝) = 𝑠 ∪ {𝑝} ∧ sqt(𝑑𝑞) = 𝑠 ∪ {𝑞}] ∨

(∃𝑠, 𝑝, 𝑞)(∃𝑑 ∈ 𝑪)[𝑑 = ∨ -INTRO(𝑠, 𝑝, 𝑞, 𝑑) ∧ 𝑝 ∨ 𝑞 ∈ 𝑠 ∧ sqt(𝑑) = 𝑠 ∪ {𝑝, 𝑞}] ∨

(∃𝑠, 𝑝)(∃𝑑 ∈ 𝑪)[𝑑 = ∀-INTRO(𝑠, 𝑝, 𝑑) ∧ ∀̂𝑝 ∈ 𝑠 ∧ sqt(𝑑) = 𝑠+ ∪ {𝑝+(&̂0)}] ∨

(∃𝑠, 𝑝, 𝑡)(∃𝑑 ∈ 𝑪)[𝑑 = ∃-INTRO(𝑠, 𝑝, 𝑡, 𝑑) ∧ ∃̂𝑝 ∈ 𝑠 ∧ sqt(𝑑) = 𝑠 ∪ {𝑝(𝑡)}] ∨

(∃𝑠)(∃𝑑′ ∈ 𝑪)[𝑑 = WK(𝑠, 𝑑′) ∧ 𝑠 ⊇ sqt(𝑑′)] ∨

(∃𝑠)(∃𝑑′ ∈ 𝑪)[𝑑 = SHIFT(𝑠, 𝑑′) ∧ 𝑠 = sqt(𝑑′)+] ∨

(∃𝑠, 𝑝)(∃𝑑1, 𝑑2 ∈ 𝑪)[𝑑 = CUT(𝑠, 𝑝, 𝑑1, 𝑑2) ∧ sqt(𝑑1) = 𝑠 ∪ {𝑝} ∧ sqt(𝑑2) = 𝑠 ∪ {¬̂𝑝}] ∨

(∃𝑠, 𝑝)[𝑑 = ROOT(𝑠, 𝑝) ∧ 𝑝 ∈ 𝑠 ∧ 𝑝 ∈ 𝑇 ]]
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4.メタ数学の算術化

sqt(𝑑) ≔ 𝜋1(𝑑 − 1)
AXL(𝑠, 𝑝) ≔ ⟨𝑠, 0, 𝑝⟩ + 1

⊤-INTRO(𝑠) ≔ ⟨𝑠, 1, 0⟩ + 1

∧ -INTRO(𝑠, 𝑝, 𝑞, 𝑑𝑝, 𝑑𝑞) ≔ ⟨𝑠, 2, 𝑝, 𝑞, 𝑑𝑝, 𝑑𝑞⟩ + 1

∨ -INTRO(𝑠, 𝑝, 𝑞, 𝑑) ≔ ⟨𝑠, 3, 𝑝, 𝑞, 𝑑⟩ + 1
∀-INTRO(𝑠, 𝑝, 𝑑) ≔ ⟨𝑠, 4, 𝑝, 𝑑⟩ + 1

∃-INTRO(𝑠, 𝑝, 𝑡, 𝑑) ≔ ⟨𝑠, 5, 𝑝, 𝑡, 𝑑⟩ + 1

WK(𝑠, 𝑑) ≔ ⟨𝑠, 6, 𝑑⟩ + 1
SHIFT(𝑠, 𝑑) ≔ ⟨𝑠, 7, 𝑑⟩ + 1

CUT(𝑠, 𝑝, 𝑑1, 𝑑2) ≔ ⟨𝑠, 8, 𝑝, 𝑑1𝑑2⟩ + 1
ROOT(𝑠, 𝑝) ≔ ⟨𝑠, 9, 𝑝⟩ + 1

𝐷𝑇
𝑪  の不動点を取って T.Derivation とする．以下のように定める．

def Language.Theory.Derivable (T) (s : V) : Prop := ∃ d, T.DerivationOf d s
def Language.Theory.Provable (T) (p : V) : Prop := T.Derivable {p}

定義より T.Derivable や T.Provable は Σ1.
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4.メタ数学の算術化

4.4 Gödel数化

（メタ論理の）項/論理式から（ 𝑉  の内部の）形式化された項/論理式への翻訳 𝑡 ↦ ⌈𝑡⌉, 𝜑 ↦ ⌈𝜑⌉
をコーディング通りに定義する．

#eval Encodable.encode (“⊤” : Sentence ℒₒᵣ)
  /- 7 -/
#eval Encodable.encode (“1 + 1 = 2” : Sentence ℒₒᵣ)
  /- 2811283025421999017712752184705287682765933652183125347889924839244702557909257480149303662
     0226056829379396867558990018685021300411793862047857546098162625163543635122202320614830504
     5032994237166744576048470977246790815309324291777191455007248230247852452218972967918789604
     6549123727569857552482425621934531125928101852294893549785680809310809523176634584145844302
     5403080631492029306853223861326740190114231247862748245410665797364948572233034830050682843
     0586068980626109306946946510933159275481055524034583309159054488191374946941436375286182247
     2934435856999319941455469415760760469554147547207581743524630022634897251631217278137049000
     0720142817763639758008432269310312579231167553225000584223488849283104065326226084742908739
     1926282639848319450229266995417413133859040482530307149746254214536136234612283878168584544
     0140202739452286492522894832319502650575282054270818964898878686030069994727438159066748780
     6793436703922580916715270838972818987012192890409519287109955207836968510432355251110156455
     5848127363401105585258109417133714744133195894888409659553672360357137318621009961116974146
     9010059357928982517174650081907896565063353817595634565097605705845515007215881579535384687
     7165987904543322149860791463967564337677539451591793909705364343215133849384526734310253600
     618529011635630072568447447378714105148191145285 -/
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5. Hilbert-Bernays-Löb の可証性条件

5.1可証性条件

補題 5.1.1 :  𝑇  を 𝖨Σ1より強い理論， 𝑈  を 𝖱𝟢 より強い Δ1定義可能な理論だとする． この
とき，
D1 𝑈 ⊢ 𝜎 ⟹ 𝑇 ⊢ Provable𝑈(⌈𝜎⌉)
D2 𝑇 ⊢ Provable𝑈(⌈𝜎 → 𝜏⌉) → Provable𝑈(⌈𝜎⌉) → Provable𝑈(⌈𝜏⌉)
D3 𝑇 ⊢ Provable𝑈(⌈𝜎⌉) → Provable𝑈(⌈Provable𝑈(⌈𝜎⌉)⌉)

ℕ ⊧ 𝑇  ならば¹ 更に次が成り立つ．
D1′ 𝑈 ⊢ 𝜎 ⟺ 𝑇 ⊢ Provable𝑈(⌈𝜎⌉)

¹実際には Σ1 健全性で十分．
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5. Hilbert-Bernays-Löb の可証性条件

5.1可証性条件

D1 及び D2, D1′ は形式化された証明の性質を地道に証明すれば示せる．

theorem provableₐ_D1
    [𝐈𝚺₁ ≼ T] [U.Delta1Definable] {σ : SyntacticFormula L} :
    U ⊢! σ → T ⊢! U.bewₐ σ 
theorem provableₐ_D2
    [𝐈𝚺₁ ≼ T] [U.Delta1Definable] {σ π : SyntacticFormula L} :
    T ⊢! U.bewₐ (σ ➝ π) ➝ U.bewₐ σ ➝ U.bewₐ π
theorem provableₐ_complete
    [𝐈𝚺₁ ≼ T] [ℕ ⊧ₘ* T] [𝐑₀ ≼ U] {σ : LO.FirstOrder.Sentence ℒₒᵣ} :
    U ⊢! σ ↔ T ⊢! U.bewₐ σ

¹²

¹T ⊢ φ は φの理論 T-証明の型，T ⊢! φはそのような証明が存在することを表す命題．

²T.Provable p は p ∈ V に関するモデル上の形式化された証明可能性を表す． 一方 T.bewₐ σ は T.Provable ⌜σ⌝を定義する論理式を指す．
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5. Hilbert-Bernays-Löb の可証性条件

5.2形式化された Σ1-完全性

D3 は直接示すのは難しいが，次の補題より従う．

補題 5.2.1 (形式化された Σ1-完全性) :  𝑇  を 𝖨Σ1より強い理論， 𝑈  を 𝖱𝟢 より強い Δ1定義可
能な理論だとする． 文 𝜎 が Σ1論理式ならば，次が証明可能．

𝑇 ⊢ 𝜎 → Provable𝑈(⌈𝜎⌉)

証明 𝑇  のモデル 𝑉  の内部で作業する．

次を示せばよい： すべての Σ1論理式 𝜑(𝑥1, …, 𝑥𝑘), 𝑎1, …, 𝑎𝑘 ∈ 𝑉  について， 𝑉 ⊧ 𝜑[𝑎1, …, 𝑎𝑘] ⟹
Provable𝑈(⌈𝜑⌉(𝑎1, …, 𝑎𝑘)) これは 𝜑 に関する帰納法で示せる．□

theorem provableₐ_sigma₁_complete
    {σ : Sentence ℒₒᵣ} (hσ : Hierarchy 𝚺 1 σ) :
    T ⊢! σ ➝ U.bewₐ σ
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6.不完全性定理

6.1第一不完全性定理

G1 は 1, 2, 3, 4 までの結果で証明できる．

定理 6.1.1 (G1) :  𝑇  が Δ1 定義可能で 𝖱𝟢 より強く Σ1-健全ならば， 𝑇  から証明も反証もで
きない論理式が存在する．

証明 𝐷 ≔ {⌈𝜑⌉ | 𝜑 : 1変数の論理式, 𝑇 ⊢ ¬𝜑(⌈𝜑⌉)} と定義する． 𝑇 ⊢ 𝜋 ⇔ ℕ ⊧ Provable𝑇 (⌈𝜋⌉), また Provable𝑇  は
Σ1定義可能なので， 𝐷 は r.e.集合.

表現定理より次を満たす 𝜃 が存在する: すべての 𝑛 ∈ ℕ について 𝑛 ∈ 𝐷 ⟺ 𝑇 ⊢ 𝜃(𝑛)．

𝑛 = ⌈𝜃⌉ と置くと，

𝑇 ⊢ 𝜃(⌈𝜃⌉) ⟺ ⌈𝜃⌉ ∈ 𝐷 ⟺ 𝑇 ⊢ ¬𝜃(⌈𝜃⌉)

よって 𝑇  が完全だと仮定すると矛盾する． □
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6.不完全性定理

6.1第一不完全性定理

theorem goedel_first_incompleteness : ¬System.Complete T := by
  let D : ℕ → Prop := fun n : ℕ ↦ ∃ p : SyntacticSemiformula ℒₒᵣ 1, n = ⌜p⌝ ∧ T ⊢! ∼p/[⌜p⌝]
  -- D の定義
  have D_re : RePred D := by ...
  -- D は r.e.
  let θ : SyntacticSemiformula ℒₒᵣ 1 := codeOfRePred (D)
  have : ∀ n : ℕ, D n ↔ T ⊢! θ/[‘↑n’] := fun n ↦ by
    simpa [Semiformula.coe_substs_eq_substs_coe₁] using re_complete (T := T) (D_re) (x := n)
  -- D を表現する論理式 θ を取る
  let ρ : SyntacticFormula ℒₒᵣ := θ/[⌜θ⌝]
  -- ρ := θ(⌜θ⌝)
  have : T ⊢! ∼ρ ↔ T ⊢! ρ := by
    simpa [D, goedelNumber'_def, quote_eq_encode] using this ⌜θ⌝
  -- T ⊢ ¬ρ ↔ T ⊢ ρ
  have con : System.Consistent T := consistent_of_sigma1Sound T
  -- T は無矛盾
  refine LO.System.incomplete_iff_exists_undecidable.mpr ⟨↑ρ, ?_, ?_⟩
  -- ρ が T から独立であることを示す
  · intro h
    have : T ⊢! ∼↑ρ := by simpa [provable₀_iff] using this.mpr h
    exact LO.System.not_consistent_iff_inconsistent.mpr (inconsistent_of_provable_of_unprovable h this) inferInstance
    -- T ⊢ ¬ρ ならば矛盾．
  · intro h
    have : T ⊢! ↑ρ := this.mp (by simpa [provable₀_iff] using h)
    exact LO.System.not_consistent_iff_inconsistent.mpr (inconsistent_of_provable_of_unprovable this h) inferInstance
    -- T ⊢ ρ ならば矛盾．
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6.不完全性定理

6.2第二不完全性定理

補題 6.2.1 (不動点補題) :  1変数の論理式 𝜃 について，次を満たす 文 fixpoint𝜃 が存在する．

𝖨Σ1 ⊢ fixpoint𝜃 ↔ 𝜃(⌈fixpoint𝜃⌉)

証明 形式化された論理式に数項を代入する関数のグラフ substNumeral(𝑦, 𝑝, 𝑥) は Σ1 定義可能．

𝖨Σ1 ⊢ substNumeral(𝑦, 𝑝, 𝑥) ↔ 𝑦 = 𝑝(𝑥)

fixpoint𝜃 を次のように定義する．

diag𝜃(𝑥) ≔ (∀𝑦)[substNumeral(𝑦, 𝑥, 𝑥) → 𝜃(𝑦)]
fixpoint𝜃 ≔ diag𝜃(⌈diag𝜃⌉)

このとき，𝖨Σ1 に於いて，

fixpoint𝜃 ≝ (∀𝑦)[substNumeral(𝑦, ⌈diag𝜃⌉, ⌈diag𝜃⌉) → 𝜃(𝑦)]
↔ 𝜃(⌈diag𝜃(⌈diag𝜃⌉)⌉)
≝ 𝜃(⌈fixpoint𝜃⌉)

□
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6.不完全性定理

6.2第二不完全性定理

Gödel文 「この文は証明できない」を定義する． G𝑇 ≔ fixpoint¬Provable𝑇

以降 𝑇  を 𝖨Σ1 より強い理論とする．

補題 6.2.2 :
1. 𝑇  が無矛盾ならば 𝑇 ⊬ G𝑇，
2. ℕ ⊧ 𝑇  ならば 𝑇 ⊬ ¬G𝑇 .

証明
1. 𝑇 ⊢ G𝑇  と仮定する. 不動点補題より 𝑇 ⊢ ¬Provable𝑇 (⌈G𝑇 ⌉)を得る． 一方 D1より 𝑇 ⊢

Provable𝑇 (⌈G𝑇 ⌉) なので 𝑇  は矛盾する．これは仮定に反する．
2. 𝑇 ⊢ ¬G𝑇  と仮定する． 不動点補題より 𝑇 ⊢ Provable𝑇 (⌈G𝑇 ⌉) を得る． D1′ より 𝑇 ⊢ G𝑇  なので 𝑇  は
矛盾する．これは仮定に反する．
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6.不完全性定理

6.2第二不完全性定理

𝑇  の無矛盾性を表す文を定義する． Con𝑇 ≔ ¬Provable𝑇 (⌈⊥⌉)

補題 6.2.3 :  𝑇 ⊢ Con𝑇 ↔ G𝑇

証明
(→) ¬G𝑇 → Provable𝑇 (⌈⊥⌉) を示せばよい． ¬G𝑇  を仮定する．不動点補題よりProvable𝑇 (⌈G𝑇 ⌉). また，不動点補題
と D1 より Provable𝑇 (⌈G𝑇 → ¬Provable𝑇 (⌈G𝑇 ⌉)⌉). よって D2 より Provable𝑇 (⌈¬Provable𝑇 (⌈G𝑇 ⌉)⌉).

一方 D3 より Provable𝑇 (⌈Provable𝑇 (⌈G𝑇 ⌉)⌉). 再び D2 を用いて Provable𝑇 (⌈⊥⌉) を得る．
(←) Provable𝑇 (⌈⊥⌉) → ¬G𝑇  を示せばよい． Provable𝑇 (⌈⊥⌉) を仮定する．D1 より Provable𝑇 (⌈⊥→ G𝑇 ⌉), よって D2
より Provable𝑇 (⌈G𝑇 ⌉). 不動点補題より ¬G𝑇  を得る．□

定理 6.2.1 (G2) :  𝑇  が無矛盾ならば 𝑇 ⊬ Con𝑇 . ℕ ⊧ 𝑇  ならば 𝑇 ⊬ ¬Con𝑇 .
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6.不完全性定理

6.2第二不完全性定理

よって以下が証明できる．

theorem goedel_second_incompleteness 
    [𝐈𝚺₁ ≼ T] [T.Delta1Definable] [LO.System.Consistent T] :
    T ⊬ ↑𝗖𝗼𝗻
theorem inconsistent_undecidable
    [𝐈𝚺₁ ≼ T] [T.Delta1Definable] [ℕ ⊧ₘ* T] :
    System.Undecidable T ↑𝗖𝗼𝗻

ただし，上の証明が本質的に依存しているのは D1, D2, D3 と述語の健全性のみ．
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6.不完全性定理

6.3証明可能性論理

以下の内容は私（齋藤）ではなく，主に神戸大の野口氏の形式化した結果である．

型クラスを用いて証明可能性述語やHilbert-Bernaysの可証性条件を抽象的に定義できる．

structure ProvabilityPredicate (T : Theory L) (U : Theory L) where
  prov : Semisentence L 1
  spec {σ : Sentence L} : U ⊢! σ → T ⊢! prov/[⌜σ⌝] -- 少なくとも D1を満たす
class Diagonalization (T : Theory L) where
  fixpoint : Semisentence L 1 → Sentence L
  diag (θ) : T ⊢!. fixpoint θ ⭤ θ/[⌜fixpoint θ⌝]
...
class ProvabilityPredicate.HBL2 (𝔅 : ProvabilityPredicate T U) where
  D2 {σ τ : Sentence L} : T ⊢! 𝔅 (σ ➝ τ) ➝ (𝔅 σ) ➝ (𝔅 τ) -- D2
class ProvabilityPredicate.HBL3 (𝔅 : ProvabilityPredicate T U) where
  D3 {σ : Sentence L} : T ⊢! (𝔅 σ) ➝ 𝔅 (𝔅 σ) -- D3
class ProvabilityPredicate.HBL (𝔅 : ProvabilityPredicate T₀ T)
  extends 𝔅.HBL2, 𝔅.HBL3 -- D1 + D2 + D3
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6.不完全性定理

6.3証明可能性論理

これらの仮定の上で一般的に G1や G2が証明できる．

第一不完全性定理：

theorem goedel_independent
    [T ≼ U] [Diagonalization T] [LO.System.Consistent U]
    (𝔅 : ProvabilityPredicate T U) [𝔅.GoedelSound] :
    System.Undecidable U (goedel 𝔅)

第二不完全性定理：

theorem unprovable_consistency
    [T ≼ U] [Diagonalization T] [System.Consistent U]
    (𝔅 : ProvabilityPredicate T U) [𝔅.HBL] :
    U ⊬ con 𝔅
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6.不完全性定理

6.4今後

• 算術的完全性定理．
• Paris-Harringtonの定理等の独立命題に関する結果．
• 集合論．
• 二階算術．
• 直観主義一階述語論理, 特に Heyting arithmetic．
• Büchi arithmetic や 𝖲𝟤𝖲 の決定性．
• 自動証明．

⋮

Lean4を用いた Gödelの第一/第二不完全性定理の形式化 42 / 43



Bibliography

Bibliography
[1] L. C. Paulson, “A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle,” Journal of

Automated Reasoning, vol. 55, pp. 1–37, 2015.

[2] W. Pohlers, Proof theory: The first step into impredicativity. Springer Science & Business Media, 2008.

[3] P. Hájek and P. Pudlák, Metamathematics of first-order arithmetic, vol. 3. Cambridge University Press, 2017.

[4] S. Cook and P. Nguyen, Logical foundations of proof complexity, vol. 11. Cambridge University Press
Cambridge, 2010.

Sponsor

FormalizedFormalLogic  is supported by Proxima Technology 

Lean4を用いた Gödelの第一/第二不完全性定理の形式化 43 / 43

https://github.com/FormalizedFormalLogic
https://github.com/FormalizedFormalLogic
https://github.com/FormalizedFormalLogic
https://github.com/FormalizedFormalLogic
https://github.com/FormalizedFormalLogic
https://proxima-ai-tech.com/
https://proxima-ai-tech.com/
https://proxima-ai-tech.com/

	FFL
	不完全性定理
	一階述語論理の形式化．
	項・論理式の形式化
	証明可能性の形式化

	完全性定理
	完全性定理
	証明探索

	IΣ1の内部で算術を展開する
	算術の公理系を定義する
	（形式的）証明のルーチン
	definability tactic
	指数関数
	遺伝的有限集合
	原始再帰
	再帰的定義

	メタ数学の算術化
	項のコーディング
	論理式のコーディング
	Tait計算のコーディング
	Gödel数化

	Hilbert-Bernays-Löb の可証性条件
	可証性条件
	形式化された Σ1-完全性

	不完全性定理
	第一不完全性定理
	第二不完全性定理
	証明可能性論理
	今後

	Bibliography

