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1.1 38 - im0 B AL
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inductive Semiformula (L : Language) (§ : Typex) : N > Type _ where

verum {n} : Semiformula L € n

falsum {n} : Semiformula L € n

rel {n} : {arity : N} > L.Rel arity » (Fin arity - Semiterm L & n) > Semiformula L & n
nrel {n} : {arity : N} » L.Rel arity » (Fin arity » Semiterm L € n) > Semiformula L & n

and {n} : Semiformula L € n » Semiformula L £ n » Semiformula L £ n
or {n} : Semiformula L £ n - Semiformula L € n » Semiformula L € n
all {n} : Semiformula L & (n + 1) » Semiformula L € n
ex {n} : Semiformula L & (n + 1) » Semiformula L & n

A B 1K 5L

98 + 6748 = 6346 “98 + 6748 = 6846”
(Vz)(Vy)la- (z+y)=a-z+a-y] “a | ¥Vxy,ax(x+y)=axx+axy”
(%ﬂh<ﬁﬂ+vknx:ﬂ “W“ x, x <™ eVi<n, x=1i”

I - GAREROMBE L TERT S, 0 pog=—pVy ET 5.
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VY pAY v Jp, A Gf A CT) (ifoeT)

inductive Derivation (T : Theory L) : Sequent L » Type _

axL (A) {k} (r : L.Rel k) (v) : Derivation T (rel r v :: nrel r v :: A)

verum (A) : Derivation T (7 :: A)

or {A p g} : Derivation T (p :: g :: A) » Derivation T (p v g :: A)

and {A p q} : Derivation T (p :: A) » Derivation T (q :: A) » Derivation T (p A q :: A)
all {A p} : Derivation T (Rew.free.hom p :: A*) -» Derivation T ((V' p) :: A)

ex {A p} (t) : Derivation T (p/[t] :: A) > Derivation T ((3' p) :: A)

wk {A T} : Derivation T A > A c T » Derivation T T

cut {A p} : Derivation T (p :: A) » Derivation T (~p :: A) > Derivation T A

root {p} : p €T~ Derivation T [p]

Tait B EGHRIRA D e reoiieR${, LK 4 EDfthoHERRANIC F <8k & 7 ZFAA A E
Giins (ZEbd3).
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TFep<=TEgp
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L,
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(3)

(ﬂHWSaAIﬁﬂvwwhSM

[(w<anz#a)v(Vyla<yl.b<anbsa)V(vya<y)

@)l <ahz+a)V(¥y)a |g yll,b<anb+a, (Vy)a <yl

@@ <anrsta)V(Maalb<anbta,

inductive Redux (T : Theory L) :
| axLRefl {I : Sequent L} {k}
Semiformula.rel r v ¢ I v Sem
verumRefl {I : Sequent L} : T

and, {r : Sequent L} {p
and2 {r : Sequent L} {p
andrRefl  {I : Sequent L} {p
or {r : Sequent L} {p
orRefl {r : Sequent L} {p

: Sequent L} {p

all {
allRefl  {I : Sequent L} {p :
ex {r : Sequent L} {p :

3' p € [ » Redux T (Code.ex p

exRefl {r : Sequent L} {p :

3' p ¢ [ > Redux T (Code.ex p

id {r : Sequent L} {p :
idRefl {r : Sequent L} {p :

g

local notation:25 As" <[" c:25 "]
inductive ReduxNat (T : Theory L)

| redux {c : Code L} : decode s.
| refl : decode (a := Code L) s.

Tlocal notation:25 A4" <({" s:25 ")

(Ea)(z<anz#a)V(Vya<yllb<aAb#aa<ec

a<cb<a @)z <anz#a)Vv(Vyla<yllb<arbtaa<chbta
Bx)[(z<arz#a)V(Vyla<yllb<arbtaa<cbta(c<arc#a)V(Vy)la<y]
(Eo)(x<anz+a)V(Vyla<ylb<arbtaa<cb#ac<anrcta (Vy)a<y]

Code L » Sequent L » Sequent L » Prop

(r : L.Rel k) (v) :

iformula.nrel r v ¢ I > Redux T (Code.axL v v) T
¢ [ > Redux T Code.verum I'

q : SyntacticFormula L} : p A g € I » Redux T (Code.and p q) (p rr
q : SyntacticFormula L} : p A g € T » Redux T (Code.and p q) (q ryr
q : SyntacticFormula L} : p A g ¢ I » Redux T (Code.and p q) I F
q : SyntacticFormula L} : p Y q € T » Redux T (Code.or p q) (p qur)r
q : SyntacticFormula L} : p Y q ¢ [ » Redux T (Code.or p q)
: V'
V'

(

r F
p € I > Redux T (Code.all p) (p/[&(newvar T)] =z ) I
p ¢ [ > Redux T (Code.all p) ' I
SyntacticTerm L} :

SyntacticSemiformula L 1} :
SyntacticSemiformula L 1} :
SyntacticSemiformula L 1} {t H
t) (p/[t] == T) T
SyntacticSemiformula L 1} {t : SyntacticTerm L} :

tyrr

SyntacticFormula L} (hp : p € T) : Redux T (Code.id p) ((~VVp) :: ') I
SyntacticFormula L} (hp : p ¢ T) : Redux T (Code.id p) I' I

" £2:80 = Redux T ¢ A1 Az

(s : N) : Sequent L » Sequent L » Prop
unpair.1 = some ¢ » V {A2 A1}, Redux T ¢ Az A1 » ReduxNat T s A, As
unpair.1 = none » V A, ReduxNat T s A A

" £2:80 = ReduxNat T s A1 A2

= B (3%E:[2)).

BEZR AR HY well-founded ¢ & 1 EHFRH ] RE

noncomputable def syntacticMainlLemma

(wf

(p

WellFounded (SearchTree.Lt T T))
SearchTree T IN)
T > p.seq

R AP well-founded T2 w2 GIE T OKRHIE 7 v Model

TrHWRTS 3.

lemma Model.models

: Model T T Emx T

lemma semanticMainLemmaTop
(nwf

{0
(h

-WellFounded (SearchTree.Lt T TI))
SyntacticFormula L}

-Evalf (Model.structure T ') Semiterm.fvar ¢
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3.1 B8O RPERT S

inductive PeanoMinus : Theory Lor

| equal : Y ¢ € EQ, PeanoMinus ¢
addZero : PeanoMinus “x | x + 0 = x”
addAssoc : PeanoMinus “x y z | (x +y) + 2z =x+ (y + 2)”
addComm : PeanoMinus “x y | x + y =y + x”
addEqOfLt : PeanoMinus “x y | x <y->3 2z, x +z =y
zerolLe : PeanoMinus “x | 0 = x”
zeroLtOne : PeanoMinus “0 < 1”
oneLeOfZeroLt : PeanoMinus “x | 0 < x » 1 = x”

PA~ addLtAdd : PeanoMinus “x y z | x <y x+z <y + 2"

mulZero : PeanoMinus “x | x * 0 = 0”
mulOne : PeanoMinus “x | x % 1 = x”
mulAssoc : PeanoMinus “x y z | (x * y) * z = x % (y % 2)”
mulComm : PeanoMinus “x y | x x y =y % x”
mulLtMul : PeanoMinus “x y z | x <y AQ<zZ->X%2zZ<Yy
distr : PeanoMinus “x y z | x % (y + Z) = X ®* y + X %
ltIrrefl : PeanoMinus “x | x ¢ x”
1tTrans : PeanoMinus “x y z | x < yAy<z->x<2

| 1t7ri : PeanoMinus “x y | x <y vx=yvx>y”
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lp

PA

def succInd {€} (o :

Semiformula L £ 1) : Formula L & :=

“lo 0> (VY x, lox>T1o (x +1)) >V x, ' x”

def indScheme (I :
: Semiformula L N 1, T p A q = succInd p }

{aql3

abbrev indH (I :

P

Semiformula L N 1 » Prop) : Theory L :=

Polarity) (k : N) : Theory Lor :=

PA- + indScheme Lor (Arith.Hierarchy I k)

abbrev iSigma (k

abbrev peano :

inductive

| equal
| Q4 (n
| Q2 (ﬂ
| Q3 (n
| Q4 (ﬂ

CobhamRO
: Y ¢ € EQ, CobhamRO ¢

m <
m :

m

: N)
: N)

: N) : Theory Lor := IND L k

Theory Lor := PA~ + indScheme Lo,r Set.univ

N) :
N) :

: Theory Lor

CobhamRO “tn + tm = 1(n
CobhamRO “tn % tm = t(n % m)”
n # m > CobhamRO “tn # tm”

: CobhamRO “Y x, x < ™h e Vi <n, x = 11"
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3.2 (BERW) itHor—F >
FTHBROEEDOET VY REIET 3.

variable {V : Typex} [ORingStruc V] [V Em% Iopen]
* ORingStruc V:V ik Lo DHETH 5 2 L # 1KY 5 typeclass.
* V kmx Iopen:V 2 HHEH Topen #i7c 3 2 & #F5R$ % typeclass.
CORED S ETEEIAZ1TS. B FEML ISV GIERBERPH 5.

lemma sqrt_exists_unique (a : V) :
3! x, x ¥* x <aArna<((x+1) % (x+1) :=by ...
def sqgrt (a : V) : V := Classical.choose! (sqrt_exists_unique a)
prefix:75 "J" = sqrt
@ simp] Llemma sqgrt_mul_self (a : V) : y(a * a) = a := by ...

2170, BNEPEHT AICHIC, ERLICEBSCEZRY S OREED D 5 EMBIREE (-
5b&ﬁmﬂ@EHnM&%awx



3.3 definability tactic

definability tactic i Lean OEEI D 2 BB -EZ I ns 2 L% (AJEEL G) HENEERHT
A .

d;-Predicate (fun v » ¥ i < len v, v.[i] = listMax v)

. T

>, -Function len >, -Relation (fun i v » v.[i] = listMax v)
v Y -Relation (fun x y » x sy) 3;-Function, (fun i v » v.[i]) 2X2;-Functionz (fun i v » listMax v)
v v v

typeclass (2 B§k d (LI B BEBRIE BEREHO REZ/RTIco Il s L 5.

instance exp_definable : Le-Functioni (Exp.exp : V > V) := by ...

instance length_definable : Ze-Functions (|-l : V > V) := by ...

instance dvd_definable : Le-Relation (funa b : Vw~a | b) := by ...
instance Language.isSemiterm_definable : Ai-Relation L.IsSemiterm := by ...
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3.4 TREBIEL
R D 7 Z 7 Exp(r,y) © 2% =y 13 5, swl N CEFK T 6E [3], [4].

EXp(aO, al) = [lao = 0] Afar = 1]V [Bzo < ((((a1 - a1) - a1) - a1) + 1))[(Fz1 < ((((a1 - a1) - @1) - a1) + D)[[[(Br2 < (zo + [0 £ ((L+1) +1) + D]V [Crs < (1 +1) +1) + 1))[zo =
(((A+1D)+1)+1) z2) +a3)[JA[[((L+1)+1)+1) # O]V [z2 = O] A[Czs < (z2+1)[[[0 £ (A+1)+ 1)+ D] V[(EFza < ((A+1)+1)+1))[z2 = ((L+ 1) +1) +1)-z3) + 2 [JA[((L+ 1)+ 1) +1) # 0]V [z5 =
O A (I + 1) + 1) +1) -as) # @] A[(((L+1) +1) +1) -a3) £ @]V [we = (L+1) + 1)+ 1) -23) + DI A[[w2 £ (L+1)+1) + 1) -25)] V [L = O[] A [Ba2 < (1 +1)([[[0 £ (L+1)+ 1)+ D]V [(Fzs <
(1+1)+1)+1) [z = ((((L+1)+1)+1)-z2)+z3)]]IA[[(((14+1)+1)+1) # 0]V[z2 = O]]]A[(3zs < (z2+1))[[[[0 £ (((1+l)+1)+1)]V[(3x4 < ((141)+1)+1)) [w2 = (((((L+1)+1)+1)-z3)+za) A (((1+1)+1)+1) #
0]V [zs = O] A[[[[((((L+1)+1)+1)-z3) # 2] A[(((L+1) +1)+1)-23) £ z2]]V[z2 = (((L+1)+1)+1)-23) +(1+1)]JA[[z2 £ ((L+1)+1)+1)-23)]V[(1+1) = O] A[[(Va2 < (a1+1 Mlzz2 = 1+1)]V[[[0 £
z2] V[(Fas < (z2+1))[[1 < @3] A[[(Bwa < (22+1))[z2 = (z3-24)]]A[(Vaa < (23 +1))[2s # (1+1) - za)]]]]]] V [(Vas < (141) - 22))[[[Cea < (w3 +1)[[[[0 £ 1]V [(Bas < 1)[zs = ((1-2a) +a5)]]] A [[1 #0]V[za =
O A [(Vas < (za+1))[za # (1+1)-25)]]]]V[[(Voa < (23 +1))[[[[0 < A+ D)]A[(Vas < (1+1))[zs # (1+1)-24) +as)]]] V[[(1+1) = 0] Alza # 0]]] V[Czs < (za+1))[za = (1+1)-235)]]]] V[(Fza < (z3+1))[[[0 <
za] A [(Vas < (za+1))[[L £ 5]V [[(Vae < (x4+1))[za # (5 26)]] V [(Cre < (254 1))[xs = (1+1) -26)JIIA[[(1+1) <za] A[[[Cas < (z3+1)[[[[0 £ z4] V [(Fze < z4)[23 = ((w4-25) +26)]]] Af[xa # O]V [25 =
O A[(Vos < (z5+1))[ws # ((1+1)-26)|IIA[(Vas < (za+1)[[[[(z5-25) # za] A[(25-25) £ 2a]]V[2a £ ((25+1)- (25 +1)]]V[[(25-25) # 24] V[(Vas < (23+1))[[[[0 < 25]A[(Var < a5)[zs # ((25-26) +27)]]] V[[25 =
0] A fzs # O]]] V [(F27 < (w6 + 1)) [zs = (L + 1) - z2)]JIN]] V [R5 < (24 + 1) [[[[(z5 - 25) = 4] V [(25 - 5) < @a]] Afza < (25 + 1) - (25 + D) A [[(25 - 25) = za] A[(Fzs < (23 + 1))[[[[0 £ 25] V [(Bar < 25)[2s =
((zs-we)+a7)]]]A[[zs # 0]V[ze = O]]A[(Var < (z6+1))[xe # ((1+1)-27)]]]]A[(Yas < (23+1))[[[[0 < za]A[(Vzs < 24)[z3 # (za-w5)+ae)|]]V[[za = O]A[zs # O]]]V[(Fwe < (z5+1))[xs = ((1+1) 15)]]]]]]]]]]]V[(V$4 <
(23 +D)[[[[0 < z2] A[(Vs < 22)[23 # ((22-24) +25)]]] V [[£2 = 0] A[2a # O]]] V[(P25 < (24+1))[za = ((14+1)-25)]]]]]] V [[[(Fzs < (z0 +1))[[(Fza < (w0 +1))[[[[0 £ 2]V [(Fz5 < 22)[w0 = ((22-24) +25)]]] A [[22 #
0]V[za = O]JA[(Fzs < (za+1))[[[[0 £ 22]V[(Fzs < z2)[za = ((z2-75)+6)|[]A[[22 # O]V [25 = O] A[[[[(z2-75) # a] A[(w2-25) £ za]]V[za = ((22-75)+23)]|A[[za £ (22-25)]V [23 = O]]]JA[(Bzs < (20+1))[[[[0 £
(z2-22)]V[(Frs < (22-22)) [0 = (((22-22) - 24) +235)[[] A[[(T2- 22) # O]V [24 = O[] A[(F25 < (24 +D))[[[[0 £ (22-22)]V[(Fw6 < (22-22))[24 = (((22-22) - @5) +26) || A[[(w2-22) # O]V [£5 = O] A[[[((22-22) - 25) #
za] A[((z2-22) x5) £ 2a]]V [z4 = (((22-22)-25) + (1 +1)-23)) ]| A[[za £ ((z2-22)-25)]V[(1+1)-23) = O] A[(Bas < (21+1))[[(Fza < (21 +D))[[[[0 £ 2]V [(Bas < 2)[z1 = ((w2-24) +5)]]| A[[22 # 0] V[za =
O] A [(Bzs < (za+1))[[[[0 £ z2] V [(Bxe < 22)[wa = ((x2-25) +26)]]] A[[22 # O] V [25 = O] A [[[[(w2 - x5) # za] A[(22 - 25) £ @a]] V [2a = (2 25) + 23)]| A[[2a £ (22 25)] V [23 = O]]]]] A [(Bza < (21 +1))[[[[0 £
(x2-22)]V[(Fr5 < (2-22))[21 = (((22-22) - 2a) +25)[[| A [[(T2-22) # O]V [24 = O[] A[(F25 < (24 +1))[[[[0 £ (22-22)]V[(Fw6 < (2-22))[2w4 = (((x2-22) - @5) +26) || A[[(x2-22) # O]V [25 = O] A[[[[((22-22) - 25) #
za] A [((w2 - 22) - @5) £ 2a]]V w4 = (22 - 22) - 5) + (@3- 23))]| A [ £ (227 22) - @5)] V [(23 - 23) = OJ]]]]]]]]] V [[(Brs < (2o +1))[[Bza < (o +1))[[[[0 £ z2] V[(Brs < @2)[x0 = (22 24) +25)]]| A2 # 0]V [X4 =
O] A [(Bzs < (za+1))[[[[0 £ z2] V [(Bwe < 22)[wa = ((x2-@5) +26)[]] Al[w2 # 0]V [75 = O] A [[[[(w2 - 25) # za] A[(22 - 25) £ 2a]] V [4 = (w2~ 25) + 23)]| A[[wa £ (22 25)]V [23 = O]]]]][] A [(Bza < (o + 1))[[[[0 £
(z2-22)]V[(Frs < (22-22)) [0 = (((22-22) - 2a) +25)[[| A [[(T2-22) # O]V [24 = O[] A[(F25 < (24 +1))[[[[0 & (22-22)]V[(Fw6 < (22-22))[w4 = (((22-22) - @5) +26)]|| A[[(w2-22) # O]V [z5 = O] A[[[[((22-22)-25) #
za] A[((z2-w2) - 25) £ za]]V[za = (((22-22)-25) +((1+1)-23) + 1) A[[za £ ((22-22)-25)]V[(((1+1)-23)+1) = O] A[(Gzs < (21+1))[[Fza < (21+1))[[[[0 £ 22]V[(F2s < z2)[z1 = ((x2-24) +25)]]| A[w2 #
0]V[za = OJJA[(Fzs < (za+1))[[[[0 £ 22]V[(Fws < 2)[za = ((w2-75)+6)|[JA[[22 # O]V [2w5 = O] A[[[[(w2-w5) # wa] A[(w2-25) £ za]]V[za = ((2-75)+23)]|A[[Xa £ (22-25)]V[23 = O]]]JA[(Bza < (z1+1))[[[[0 £
(z2-22)]V[(Frs < (2-22))[21 = (((22-22) - 2a) +25)[[| A[[(T2-22) # O]V [24 = O[] A[(F25 < (2a +1))[[[[0 % (22-22)]V[(Fw6 < (22-22))[wa = (((22-22)-25) +26)]|| A[[(x2-22) # O]V [z5 = O] A[[[((22-22)-25) #
zal A[((z2 - 22) - @5) £ 2a]] V [za = (22 - 22) - @5) + (1 +1) - (23 - 23)))]] A [[wa £ (22 22) - 25)] V [(1+1) - (23 - 23)) = OJ]I]IINI]IN] A [(Bz2 < ((a1 - @1) + 1)) [[z2 # (L + DI A[[[[0 < z2] A [(Vas < (22 + 1))[[1 £
23]V [[(Vas < (22 +1))[22 # (23 24)]] V [Cra < (z3+1))[zs = (1 +1) - 2] A [Czs < (1+1)-22))[[[(Vas < (23 +1D)[[[[0 < YA [(Vas < 1)[zs # (1) +25)]]] V[[1 = 0] A[za # O]]] V [(Gas < (za+1))[za =
(A+1)-2)NIA[Cza < (zs+ D)0 £ (1+D)]V[Eas < (1+1))[zz = (1+1)-za) +a5)[[JA[[(1+1) # 0]V [z4 = O] A[(Vos < (za+1))[za # (1+1)-25)]]]]A[(Vaa < (23+1))[[[0 £ z4] V[(Pas < (za+1))[[1 <
z5] A [[(Gae < (za+1))[za = (x5 -26)] A [(Vae < (25 +1))[2s # (L+1)-26)]]]] V[(A+1) £ za] V[[(Vos < (23 +1)[[[[0 < za] A[(Vas < z4)[23 # (74> 25) +26)]]] V [[24 = O] A [25 # O]]] V [(Bae < (25 +1))[z5 =
(A+1)-ze) NN VI[Ezs < (za+1)[[[[(w5-25) = 2] V(5 -25) < za]]A2a < ((25+ 1) (25 + D) A[[(25 - 25) = 4] A[Bs < (23 +1))[[[[0 £ 5] V[(Bar < 25)[2w3 = ((x5-26) +27)]]] A [[w5 # 0]V [£6 = O]]] A [(V27 <
(ze+1))[ze # (L+1)-z2)INA[(Vas < (za+1))[[[[(x5-25) # za] Al(25-25) £ 2a]]V[Ta £ ((25+1)- (25 +1)]]V[[(25-25) # 2a] V[(Vae < (23+1))[[[[0 < 2s]A[(Var < @5)[ws # ((x5-26) +27)]]]V [[75 = 0] Alzs #
0] V[(Fz7 < (w6+1))[we = ((1+1)-27)]]]V[Bas < (z3+1))[[[[0 £ z4] V[(Fzs < 4)[z3 = ((za-25)+z6)]]| A[[2a # O] V[25 = O)JA[(VEs < (25+1))[25 # (1+1)-26)|JINNNA[Cza < (23+1))[[[[0 £ 22]V[(F2s <
z2)[zs = ((z2-wa)+@s)|JA[[22 # O]V [za = O]]A[(Vos < (za+1))[za # ((1+1)-25)]]]]I]A[[(Fzs < (wo+1))[[[[0 £ 22]V[(3za < z2)[z0 = ((w2-23)+24)][JA[[22 # O]V [23 = O]]]A[(32a < (23+1))[[[[0 £ 2] V[(Fas <
z2)[ws = ((v2-4) +@s5)]]JA[[x2 # O]V [za = O] A[[[[(w2 - 4) # @3] A[(z2-24) £ @3]]V [23 = ((22-24) +@0)]| A [[23 £ (22-24)]V[a0 = O]]]][IA[Bas < (1 +1))[[[[0 £ 22] V[(Fza < 22)[21 = ((22-23) +24)]]] A [[22 #
0]V [z3 = O]]] A [(Bza < (s + 1)[[[[0 £ z2] V [(Bas < 22)[zs = ((z2 - 24) + 25)]]] A[[w2 # 0] V [wa = O]]] A [[[[(22 - 24) # z3] A [(22 - 24) £ @3]] V [23 = ((22 - 74) + @1)]| A[[2s £ (22 - 24)] V [a2 = O])]]]]]IIII]

Leand # w12 Godel D5 —/5H et r#H oAt 18 /43



3.5 HIZWERES
23y DEFR| < Iy Z HEBERLICE S o HTHP 1] EERT 3.
7 € y <= Bit(z,y) <> |y/2%| mod 2 = 1
Ackermann coding {2 & > TEEIVERES V, Pz 2. 13, 0b Lt TERNLTEGHVE
TS 5.

theorem finset_comprehensions {r'} {P : V » Prop} (hP : I-[1]-Predicate P) (a : V) :
Is<expa,Vic<a,ieseoePi-- (Ffchic)RAEn ERHT

theorem sUnion_exists_unique (s : V) :
' u, VY x, (xeuedtes, xet)-- AEGNE

theorem sigmai_replacement {f : V > V} (hf : Li-Functions f) (s : V) :
A't,Vy, (yetedxes,y=fFfx)-- (FIRShi)Em EHS

2 1CAROBB/ARIN TR 5.

def IsMapping (m : V) : Prop := Y x € domain m, 3! y, {x, y) € m
def Seq (s : V) : Prop := IsMapping s A 3 1, domain s = under 1

l



3.6 i P e
I, TRFHEEREPHC TEBPERT X 3.

TR 3.6.1: f(v),9(V,2,2) # 5y ERARELHEB LTS, 2ot s, UTxT S ERTAERBE PRec, (v, 2) 2
T 5.

PRec; ,(7,0) = f(7)
PRec; ,(0,7+ 1) = g(ﬁ, z, PRec; ,(7, az))

structure Blueprint (k : N) where
zero : Ii-Semisentence (k + 1)
succ : Li-Semisentence (k + 3)

structure Construction {k : N} (¢ : Blueprint k) where
zero : (Fin k » V) > Vv
succ : (Fin k> V) > V>Vo>V
zero_defined : DefinedFunction zero p.zero
succ_defined : DefinedFunction (fun v ~» succ (v -.succ.succ) (v 1) (v 0)) p.succ

variable {k : N} {o@ : Blueprint k} (c : Construction V @) (v : Fin k > V)
def Construction.result (u : V) : V

theorem Construction.result_zero :
c.result v O = c.zero v

theorem Construction.result_succ (u : V) :
c.result v (u + 1) = c.succ v u (c.result v u)



3.7 HIRIE %

M 37.1: O (0,2) ¥ 2T AC #F7 A—X L LTHWMAMEEIZET 2. & HLUTF Z e
T726,

1. ﬁgg P(C, ?7, $) = q){z | zEc}(?j? LE) &i Al ﬁ%ﬁfﬁﬁ
3. AR : 0o(t,2) K6 IX, D2 mWEFELT e ramy (U, @)

X% i1c$ B, EFRA LK WFE Fixg (9, ) PFEET 5.

Fixg (U, 2) <= P, | pixy (3,2)1 (U5 T)
SLIZREMICT I 0, Fixg(d,2) & A EFRATBET Z OREIFIED AT & 3.
4. BHR © 06(0,2) = Pryee | yeu) (0, 7)



Fixg w2 2 ETRMAICERSNICZ 72 (YR b+, B{ba e, B s vreimi
A, JBERL3 il ) #ERT S 3.

structure Blueprint (k : N) where
core : Ai-Semisentence (k + 2)

structure Construction (@ : Blueprint k) where
® : (Fin k » V) » Set V> V » Prop
defined : Arith.Defined (fun v » @ (v -.succ.succ) {x | x € v 1} (v 0)) ¢.core
monotone {C C' : Set V} (h : CcC') {vx} :®dvCx->3vC(C'x

class Construction.Finite (c : Construction V @) where
finite {C : Set V} {v x} : c.dvCx->3Im c.dvi{yecC]|y<m}x

class Construction.StrongFinite (c : Construction V @) where
strong_finite {C : Set V} {v x} : c.d vCx>c.0v {yeC]|y<x}x

variable {k : N} {o : Blueprint k} (c : Construction V @) [Finite c] (v : Fin k » V)
def Construction.Fixpoint (x : V) : Prop

theorem Construction.case :
c.Fixpoint v x e c.® v {z | c.Fixpoint v z} x

theorem induction [c.StrongFinite] {P : V » Prop} (hP : I'-[1]-Predicate P)
(H:VYC:SetV, (V xeC, c.Fixpoint v X AP x) >V x, c.0 v Cx>Px):
YV x, c.Fixpoint v x > P Xx
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A1HDa—T4 7
ANFE T ZLTOL D IZED 5.

uETCM:)(EIz)[u:#\z]\/(Ela:)[uzgczc]\/

(3k, f,v) [Func(k, f) Alen(v) = k A (Vi < k)[nth(v,i) € C] Au= f*(v)

bounded variable:  #z:= (0, z) + 1
(1, z) +1
function: f*(v):= (2, f, k, v) +1

free variable: &z :

L #IEAL 3 NICFFEICE 4. fixpoint construction (24 b To OFREIR L.IsUTerm : V »
Prop RO N 5. 72, ZOMERNED O KELEHORRE+1 #IKT S, B L. termBY : v
SVDERTE, tevhia—FlLant (EAOREBEREES) BETH - L BT A,
VhEE L.IsSemiterm n t : Prop DVEEIN 5.

def Language.IsSemiterm (n t : V) : Prop := L.IsUTerm t A L.termBV t = n



4.2 XD a—-74 7
AINGE Fe #LATD X D IZED 5.

uw € Fe <= (3k, R, v)|Rel(k, R) A u is a list of UTerm of length k A u = Rk(v)] Y

(3k, R, v)|Rel(k, R) A u is a list of UTerm of length k A u = ﬁRk(v)] v

u=TVu=1V
(3p,q€C)|u=pAg|V(E@p,qeC)lu=pVq|V
(FpeC)|lu=Vp|V(FeC)|u=Tp

RE(v):=(0, R, k,v)+1 T:=(2,00+1 pAg=={p g)+1 Vp:=(6p)+1

pi=
~RE(v):=(1, R, k,v)+1 L=(3,00+1 pVg:=(5pq+1 Ip:=(7,p)+1

BIHOD & 3 LR L TERLs e ftamBi sl # 45T A 28EE IsSemiformula n p : Prop 2VEF
EX XY



4.3 Tait it a—74 v 2

T % A, ERABELHEME TS, ARBREDL ZLITOL I ICED .

d € DL < (¥p € sqt(d))[Semiformula(0, p)] A

[(3s,p)[d = AXL(s,p) Ap € s A Zp € 5
3s)[d = T-INTRO(s) A T € 5] v
3s,p,9)(3d,,d, € C)|d = A-INTRO(s,p,q,d,, d,) NpAq € s Asqt(d,) = s U {p} Asqt(d,) = sU{q}| v

ds,p,q)(3d € C) [d = V-INTRO(s,p,q,d) ApV q € s Asqt(d) = s U {p, q}] v

3s,p,t)(3d € C)|d = I INTRO(s, p,t,d) A Ip € s Asqt(d) = s U {p(t)}] v

35)(3d’ € C)[d = WK(s,d') A s D sqt(d’)] V

3s)(3d’ € C)|d = SHIFT(s,d’) A s = sqt(d’) "] v

3s,p)(3d,,dy € C)[d = CUT(s,p,d;,dy) Asqt(dy) = sU{p} Asqt(dy) =sU{=p}]V

= (
(
(
(
(
(3s,p)(3d € C)[d = V-INTRO(s, p,d) A Vp € s Asqt(d) = s* U {p*(&0)}] v
(
(
(
(
(3s,p)[d = ROOT(s,p) Ap € s Ap €T



T-INTRO(s) := (s, 1, 0) + 1
A-INTRO( d,,d)=(s,2,p,q dy,d)+ WL, d):= 5,6, d) +
- S » Yy S )y 4y
sqt(d) = 1 (d — 1) P4 P Opr G SHIFT(s,d) == (s, 7, d>+1
V-INT 1
AXL(s,p) i= (s, 0, p) + 1 RO(s.p.q.d) = (5.3, 2. - DL qup(s,pdy,dy) = (5, 8, p, dydy) +
V-INTRO(s, p,d) := (s, 4, p, d) + 1 ROOT(s, p) := (s, 9, p) + 1
F-INTRO(s, p,t,d) := (s, 5, p, t, d) + 1

DL OAE R ZH > T T.Derivation £ T 5. ITOLHIIZED S,

def Language.Theory.Derivable (T) (s : V) : Prop := 3 d, T.DerivationOf d s
def Language.Theory.Provable (T) (p : V) : Prop := T.Derivable {p}

FEF L b T.Derivable % T.Provable I3 3;.



4. X 2RO FEAML

4.4 Godel Bk

(A 2 @Ho) HE@EEX»O (VoRHo) B s e H/mEL~ORMR t = [t], o = o]
Ya—T7T 4 7 EYICERT S.

#eval Encodable.encode (“1” : Sentence Lor)

/-7 -]/

#eval Encodable.encode (“1 + 1 = 2” : Sentence Lor)

/- 2811283025421999017712752184705287682765933652183125347889924839244702557909257480149303662
0226056829379396867558990018685021300411793862047857546098162625163543635122202320614830504
5032994237166744576048470977246790815309324291777191455007248230247852452218972967918789604
6549123727569857552482425621934531125928101852294893549785680809310809523176634584145844302
5403080631492029306853223861326740190114231247862748245410665797364948572233034830050682843
0586068980626109306946946510933159275481055524034583309159054488191374946941436375286182247
2934435856999319941455469415760760469554147547207581743524630022634897251631217278137049000
0720142817763639758008432269310312579231167553225000584223488849283104065326226084742908739
1926282639848319450229266995417413133859040482530307149746254214536136234612283878168584544
0140202739452286492522894832319502650575282054270818964898878686030069994727438159066748780
6793436703922580916715270838972818987012192890409519287109955207836968510432355251110156455
5848127363401105585258109417133714744133195894888409659553672360357137318621009961116974146
9010059357928982517174650081907896565063353817595634565097605705845515007215881579535384687
7165987904543322149860791463967564337677539451591793909705364343215133849384526734310253600
618529011635630072568447447378714105148191145285 -/

Lean4 # w12 Godel OF—/FH A2t e ot 28 /43
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5.1 ARG

MES11L: TS, S YmCHEE UXR, LY A ERIRLHERIIET S, 20
L3,

D1 Ut o0 = T+ Provabley([o])

D2 T+ Provabley([oc — 7]) — Provabley ([o]|) — Provabley ([7])

D3 T+ Provabley([o]) — Provabley ([Provabley([o])])

NET 7% 6L I KDL O LD,
D1’ Ut o < T | Provabley([o])

P S, AT,



5.1 v GE S
D1 2 F D2, D1’ i3 Mk & Ltz EERH O PEE % Hi B ([ AEFH 5 U R E 4 .

theorem provable,_D1
[IZ4 < T] [U.DeltalDefinable] {o : SyntacticFormula L} :
Ur! 0> T¢+! U.bewa ©

theorem provable,_D2
[IZ1 < T] [U.DeltalDefinable] {o m : SyntacticFormula L} :
T ! U.bewa (0 » m) » U.bewa 0 - U.bewa T

theorem provablea_complete
[IZ1 < T] [N Em%¥ T] [Roe < U] {0 : LO.FirstOrder.Sentence Lor} :
UKr! 0 e Tr! U.bewa ©

12

IT ol o OEER TEFAHOE, T 11 o320 L) REFAVHEET S Z LR TmE.
2T Provable p i3 p e VIZEHT 27 EOER(L 3 N7CEEATHEM 2 £ 3. —75 T.bewa o1& T.Provable ro" # EHET 2 imHER# T,



5.2 Bt i =, -2ehk
D3WREHERTOREEL VY, ROWEL LS.
miEs5210bante o et T 213, X bCHER, U 2R, & b A EHA
BECHHERICE T 2. Lo MU BN 61F, KA ATHE.
T + o — Provabley ([o])

G T OETAV ONERTIEET 5.

REREEL e TTO D @MER o(zy, ..., 2), aq,...,a, EVIZOCT, VEglag,..,a) =
Provabley ([¢](ay, ...,az)) 24Ut o IZBT 2 RMNIETRE 2. O

1

theorem provablea_sigmai_complete
{0 : Sentence Lo:} (ho : Hierarchy L 1 o) :

Tr! 0 » U.bews ©
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6.1 H—F et EM
Gl131,2,3.4 3 TOMBTCAHT X 3.

EM6.1.1(Gl): TH A, ERUBETR, L W< -2 6, TH»OEHLKAEL T
S CREAPEET 3.

At D= {[¢] | ¢: 1 BHEDHEN, T+ —p([p])} EEFKT S. Trnx< NEProvablep([n]), & 72 Provable, (&
Y, ERAREL DT, Didrefd.

REEHL Y RZWMICT OVEET 2. TXTOneNIZDTne DTk In).
n=1[0] L@ L,

T+ 6([6)]) < [0] € D<= T+ —6([6])
SoTTHWRENERET 2 EFET L. O



6.1 55— APsE ke M

theorem goedel_first_incompleteness : -System.Complete T := by
let D : N> Prop := funn : N~ 3 p : SyntacticSemiformula Lor 1, n = "p* A T ! ~p/["p"]
-- D DEE
have D_re : RePred D := by ...
-- D & r.e.

let 8 : SyntacticSemiformula Lor 1 := codeOfRePred (D)
have : ¥ n: N, DneT#r! 8/['tn’] := fun n » by
simpa [Semiformula.coe_substs_eq_substs_coes] using re_complete (T := T) (D_re) (x := n)
-- D ZRIRT 3mEN 6 ZED
let p : SyntacticFormula Lor := 6/[767]
--p = 6("97)
have : T r! ~p o T ! p := by
simpa [D, goedelNumber'_def, quote_eg_encode] using this r@-
- TrF-apeTFrp
have con : System.Consistent T := consistent_of_sigmalSound T
-- T I3EFF
refine LO.System.incomplete_iff_exists_undecidable.mpr {(1tp, ?_, ?_)
—p BT HOMITHBZ_EERT
- intro h
have : T ! ~tp := by simpa [provablee_iff] using this.mpr h
exact LO.System.not_consistent_iff_inconsistent.mpr (inconsistent_of_provable_of_unprovable h this) inferInstance
-- T Fr =P @BL;%E
- intro h
have : T ! tp := this.mp (by simpa [provablee_iff] using h)
exact LO.System.not_consistent_iff_inconsistent.mpr (inconsistent_of_provable_of_unprovable this h) inferInstance
-- T+ p BEIFFE.



6.2 et

filil 6.2.1 (FEISNAHE): 1 ZROFwmMENX 0 1220w T, X% S L fixpointy, HFEET 5.

132, F fixpoint, <> 6([fixpoint,|)

A b s e B RIC BIEZ A T 2 B D 27 F 7 substNumeral(y, p, z) 13 &, EFAIHE.
I3, + substNumeral(y, p, z) < y = p(Z)
fixpoint, # KD & I IZEHRT 5.
diag,(z) := (Vy)[substNumeral(y, z, z) — 6(y)]
fixpoint, := diag,([diag,])
ZOLE, IS LR T,

fixpoint, £ (Vy)[substNumeral(y, [diag,|, [diagy]|) — 6(y)]

< 0([diagy([diagy])])
£ 0([fixpointy])



6.2 B A he M
Godel & [ ZDOIFFEAT 0w | #EKT 5. Gp = fixpoint
DT # 10, L OCHEERE T5.

il 6.2.2:
1. THEFIEL OIET F Gy,
2.NET 26X T ¥ -Gy

Eilt

il
L. THGy EIRET 2. AERMEL Y T+ —Provable([G])Z21H 5.
Provable;([G]) BOT TR FET 2. ZHERECKT 3.
2. TH=Gp ERGET 5. FEEMEL O T+ Provablep([Gp]) #2158
FTETH. HNRERECKT 3.

—Provable
—} Dl &Y TH
5. DUVSYTHG, DT T



6.2 B A he M
T O|IENEXRTLEERT 5. Cong := —Provable([L])

i 6.2.3: T+ Cony < Gy

Eﬂt

Uil
(=) =Gy — Provablep([L]) Z/REIE L. -Gy ZIRET 2. FAEIAEMHEL b Provabler([G]). 272, FEIRMHE
t D1 & Y Provabley([G; — —Provabler([G1])]). & » T D2 & b Provable,([—Provable;([G1])]).

—77 D3 & b Provabley([Provable([G])]). B U D2 #Z H T Provable,([L]) #15 5.
(<) Provabler([L]) = —~G, #Z/REX L. Provabler([L]) #IRE$ 2. D1 & b Provablep([L— G;]), & o T D2
& b Provable([Gr]). FEISMEL b -G, 2185, O

ER6.2.1(G2): T HWEFEL GIET ¥ Conyp. NET 78 61X T ¥ —~Conp.



6.2 et
Lo TLUUTHEEAT 3 5.

theorem goedel_second_incompleteness
[IX1 < T] [T.DeltalDefinable] [LO.System.Consistent T] :
T ¥ 1Con

theorem inconsistent_undecidable
[IZ4 < T] [T.DeltalDefinable] [N Emx T] :
System.Undecidable T 1Con

12170, FOEFHADPARENIZKRIFEL Twv 2 D13 D1, D2, D3 L dREDOEEMD A,



W] w7 i

%LLLL

6.3

B2 5 2% v CAEH T REEREE R Hilbert-Bernays O AJREESHE Z HMRBRNICERT X 3.

structure ProvabilityPredicate (T : Theory L) (U : Theory L) where
prov : Semisentence L 1
spec {0 : Sentence L} : Ur! 0> T ! prov/[ro"] -- D7 edH Dl ZiElicd

class Diagonalization (T : Theory L) where
fixpoint : Semisentence L 1 » Sentence L
diag (8) : T +!. fixpoint 6 -~ 8/[rfixpoint 67]

class ProvabilityPredicate.HBL2 (B : ProvabilityPredicate T U) where
D2 {o T : Sentence L} : TH! B (0 »T) » (Bo) » (BT) -- D2

class ProvabilityPredicate.HBL3 (B : ProvabilityPredicate T U) where
D3 {o : Sentence L} : T+! (Bo) - B (Bo) -- D3

class ProvabilityPredicate.HBL (B : ProvabilityPredicate Te T)
extends B.HBL2, B.HBL3 -- D1 + D2 + D3



6.3 FifBH n] Be 1 v BE
IO DIRED ET—/IIZ GL R G2 »5EEHHT & 5.
[ R Nt o acych i L

theorem goedel_independent
[T < U] [Diagonalization T] [LO.System.Consistent U]
(B : ProvabilityPredicate T U) [B.GoedelSound] :
System.Undecidable U (goedel B)

B oA EH

theorem unprovable_consistency
[T < U] [Diagonalization T] [System.Consistent U]
(B : ProvabilityPredicate T U) [B.HBL] :
UK con R



T

BRI e 2 E B
Paris-Harrington O EHE DM i (2 B3 2 F5 R

ZA
;ﬁﬁl/:l\nﬁﬂ

- FE A
E#EE R REERE, 52 Heyting arithmetic.
Biichi arithmetic X S2S Ok E M.
EEUEIRR
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